Login
欢迎浏览恩派尔生物资料网
我要投稿 请登录 免费注册 安全退出

您现在的位置是: 首页 > 实验方法 > 细胞技术

细胞技术

Spatiotemporal Regulation of Ras-GTPases During Chemotaxis

2025-02-12 细胞技术 加入收藏
Many eukaryotic cells can elicit intracellular signaling relays to produce pseud

Many eukaryotic cells can elicit intracellular signaling relays to produce pseudopodia and move up to the chemoattractant gradient (chemotaxis) or move randomly in the absence of extracellular stimuli and nutrients (random movement). A precise spatiotemporal regulation of Ras-GTPases, such as Ras and Rap, is crucial to induce pseudopodia formation and cellular adhesion during the chemotaxis and random movement. Here, we describe biochemical and real-time imaging methods for using Dictyostelium to understand the signaling events important for chemotaxis and random cell movement. The chapter includes (1) a biochemical method to assess Ras and Rap1 activation in response to chemoattractant, (2) an imaging method to detect endogenous Ras and Rap1 activation in moving cells, and (3) a simultaneous imaging method to decipher the precise order and localization of these signaling events. With a combination of powerful Dictyostelium genetics, these methods will facilitate to elucidate a dynamic activation of Ras proteins and their inter relay with other signaling molecules during chemotaxis and random movement.

文章底部广告位

文章评论

加载中~