Assembly and Glycerol Gradient Isolation of Yeast Spliceosomes Containing Transcribed or Synthetic U
Studies of RNA—protein interactions often require assembly of the RNA—protein complex using in vitro synthesized RNA or recombinant protein. Here, we describe a protocol to assemble a functional spliceosome in yeast extracts using transcribed or synthetic RNAs. The in vitro assembled spliceosome is stable and can be isolated by sedimentation through glycerol gradients for subsequent analysis. The protocols describe two procedures to prepare RNA: using bacte-riophage RNA polymerases or ligation of RNA oligos using T4 DNA ligase. We also describe the preparation of splicing competent yeast extracts, the assembly of the spliceosome, and the isolation of the spliceosome by glycerol gradient sedimentation. To allow exogenously added U6 RNA to be incorporated into the spliceosome, the endogenous U6 small nuclear RNA (snRNA) in the extract is eliminated by an antisense U6 DNA oligo and ribonuclease H; a “neutralizing” U6 DNA oligo was then added to protect the incoming U6 RNA. This protocol allows study of the role individual bases or the phosphate backbone of U6 plays in splicing and of the interaction between U6 snRNA and the spliceosomal proteins.
- 上一篇
Photoactivatable-GFP--Tubulin as a Tool to Study Microtubule Plus-End Turnover in Living Human Cells
The development of photactivatable (PA) variants of Green fl...
- 下一篇
Generation of Induced Pluripotent Stem Cells from Human Amnion Cells
Induced pluripotent stem (iPS) cells have been generated thr...