Login
欢迎浏览恩派尔生物资料网
我要投稿 请登录 免费注册 安全退出

您现在的位置是: 首页 > 实验方法 > 细胞技术

细胞技术

Covisualization of Methylcytosine, Global DNA, and Protein Biomarkers for In Situ 3D DNA Methylation

2025-01-21 细胞技术 加入收藏
DNA methylation and histone modifications are key regulatory mechanisms in cellu

DNA methylation and histone modifications are key regulatory mechanisms in cellular differentiation, and are skewed in complex diseases. Therefore, analyzing the higher nuclear organization of methylated DNA in conjunction with relevant cellular components, such as protein biomarkers, may well add cell-by-cell-specific spatial and temporal information to quantitative molecular data for the discovery of stem cell differentiation-related signaling networks and their exploitation in the therapeutic reprogramming of cells. The in situ fluorescent covisualization of methylated DNA (methylated CG dinucleotides = MeC), global DNA (gDNA), and proteins has been challenging, as the immunofluorescence detection of MeC sites requires thorough denaturing of double-stranded DNA for antigen (methylated carbon-5 of cytosine) retrieval. The protocol we present overcomes this obstacle through optimization of cell membrane permeabilization, acid treatment, and intermediate fixation steps to preserve immunostaining of biomarkers and delineate MeC and gDNA, while conserving the captured three-dimensional (3D) structure of the cells; making it suitable for high-resolution confocal microscopy, 3D visualization, and topological analyses of fixed cultured cells as well as fresh and frozen tissue sections.

文章底部广告位

文章评论

加载中~