Login
欢迎浏览恩派尔生物资料网
我要投稿 请登录 免费注册 安全退出

您现在的位置是: 首页 > 实验方法 > 细胞技术

细胞技术

Assay for Protein Modification by Poly-ADP-Ribose In Vitro

2025-02-22 细胞技术 加入收藏
The enzymatic function of poly(adenosine diphosphate (ADP)-ribose) polymerase (P

The enzymatic function of poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP) is central to many of its function as a component of DNA repair machinery, modulator of gene transcription, and cell differentiation. While the auto-modification domain of PARP has been shown to be a primary acceptor site of poly-ADP ribose (pADPr), other DNA binding nuclear proteins are also modified by pADPr. It is �generally accepted that pADPr polymer is built upon the carboxyl side chain of specific Glu, Asp, and/or Lys residues within the target protein. Identification of the unique amino acid acceptors of pADPr in these nuclear proteins is an active area of study. Because of the heterogeneity of pADPr chain on modified �protein targets, the resulting modified proteins have unpredictable final masses, making it difficult to �identify acceptor amino acids. Using recombinant proteins, in vitro pADP ribosylation assay and mass spectrometry, we have been able to identify conserved Glu residue in transcription factor NFAT that is enzymatically modified in vitro with pADPr by PARP-1. We discuss this protocol here as a model approach for identifying pADPr acceptors in other nuclear proteins.

文章底部广告位

文章评论

加载中~