Chondrogenic Differentiation of Menstrual Blood-Derived Stem Cells on Nanofibrous Scaffolds
Cartilage tissue engineering is a promising technology to restore and repair cartilage lesions in the body. In recent years, significant advances have been made using stem cells as a cell source for clinical goals of cartilage tissue engineering. Menstrual blood-derived stem cells (MenSCs) is a novel population of stem cells that demonstrate the potential and differentiate into a wide range of tissues including the chondrogenic lineage. Incorporation of cell culture with extracellular matrix (ECM) like substratum plays an important role in cartilage tissue regeneration by providing attachment sites as well as bioactive signals for cells to grow and differentiate into chondrogenic lineage. The electrospun nanofibers are a class of polymer-based biomaterials that have been extensively utilized in tissue engineering as ECM-like scaffold. This chapter discusses potential of electrospun nanofibers for cell-based cartilage tissue engineering and presents detailed protocols on immunophenotyping characterization and chondrogenic differentiation of MenSCs seeded in poly-ε -caprolactone (PCL) nanofibers. The isolated MenSCs are characterized using flow cytometry, seeded on the nanofibers, imaged using scanning electron microscopy, and subsequently differentiated into chondrogenic lineage in culture medium containing specific growth factors and cytokines. Immunofluorescence and alcian blue staining are used to evaluate the development of seeded MenSCs in PCL nanofibrous scaffold into chondrogenic lineage.