Modeling Spatiotemporal Dynamics of Bacterial Populations
Quantitative modeling of spatiotemporal dynamics of cells facilitates understanding and engineering of biological systems. Using a synthetic bacterial ecosystem as a workbench, we present the approach to mathematically simulate the spatiotemporal population dynamics of the ecosystem. A description of ecosystem’s genetic construction and model development is firstly given. Parameter estimation and computational approach for the derived partial differential equations (PDEs) are then given. Spatiotemporal pattern formation is computed by numerically solving the PDE model. Biodiversity of the ecosystem and its impacts by cellular seeding distance and motility are computed according to the cell distribution patterns.