Chemotaxis of Slow Migrating Mammalian Cells Analysed by Video Microscopy
We present a microfabricated chamber designed for visualising and quantifying the chemotaxis of slow-migrating adherent mammalian cells such as cancer and endothelial cells. Most of the existing solutions for the investigation of chemotaxis are limited to fast migrating cells such as leukocytes or Dictyostelium discoideum . Here, we describe the details of an assay using the μ-Slide Chemotaxis to investigate the chemotactic response of human umbilical vein endothelial cells to a gradient of human vascular endothelial growth factor 165. In combination with phase contrast video microscopy and cell tracking, the trajectories of all single cells migrating in temporally stable gradients are derived. The resulting migration data are displayed and analysed in detail by several different parameters for quantifying chemotaxis. We found that with this tool the potential of chemoattractants to migration of mammalian cells as well as the impact of inhibitors to chemotaxis and migration can be evaluated.