SNP/单核苷酸多态性检测最常用的三种方法
1、Taqman探针法(定性)
针对染色体上的不同SNP位点分别设计PCR引物和TaqMan探针,进行实时荧光PCR扩增。探针的5’-端和3’-端分别标记一个报告荧光基团和一个淬灭荧光基团。当溶液中存在PCR产物时,该探针与模板退火,即产生了适合于核酸外切酶活性的底物,从而将探针5’-端连接的荧光分子从探针上切割下来,破坏两荧光分子间的PRET,发出荧光。通常用于少量SNP位点分析。
高分辨率熔解曲线分析(HRM)是近几年兴起的SNP研究工具,它通过实时监测升温过程中双链DNA荧光染料与PCR扩增产物的结合情况,来判断是否存在SNP,而且不同SNP位点、是否是杂合子等都会影响熔解曲线的峰形,因此HRM分析能够有效区分不同SNP位点与不同基因型。这种检测方法不受突变碱基位点与类型的局限,无需序列特异性探针,在PCR结束后直接运行高分辨率熔解,即可完成对样品基因型的分析。该方法无需设计探针,操作简便、快速,成本低,结果准确,并且实现了真正的闭管操作。
2、直接测序法
Sanger测序是DNA序列分析的经典方法,可直接获取核酸序列信息,是SNP检测的“金标准”。而且,Sanger测序可发现未知的SNP位点,确定SNP的突变类型和突变位置,是一种无法替代的最直接、最准确的SNP检测方法。
采用测序法检测SNP时,首先可将含有SNP位点的靶标序列通过PCR扩增形成DNA片段后,再利用Sanger测序获取目标区域的核酸序列,并对SNP位点进行比对,由此即可确定是否存在变异位点。
Sanger测序是基于双脱氧核糖核苷酸(ddNTP)末端终止的方法进行检测的。即在四个单独的反应体系中,分别对应掺入四种带有不同颜色标记的A、T、G、C双脱氧核苷酸,使得核苷酸在某一固定点开始延伸反应,而延伸过程中若掺入ddNTP,则由于碱基上无3’-OH导致延伸无法继续,从而随机在某一特定碱基处终止,形成相差一个碱基的不同系列长度的核酸片段,再利用毛细管电泳分离这些不同长度的核酸片段,最后通过不同碱基标记的颜色读取待测核酸的碱基序列,由此获得目标区域的核苷酸序列。
3、ARMS-PCR法
扩增阻滞突变系统PCR(Amplification Refractory Mutation System PCR,ARMS-PCR),又称为等位基因特异性PCR(Allele-Specific PCR,AS-PCR),是基于Taq DNA聚合酶无法修复引物3’末端的单个碱基错配,从而使得扩增受阻的检测方法。在扩增过程中,只有当引物3’末端的碱基与SNP位点的等位基因互补配对时,才能正常延伸扩增;而当引物3’末端的碱基与SNP位点的等位基因不互补配对时,则不发生扩增反应,由此对扩增产物进行凝胶电泳或荧光PCR检测,则可确定SNP基因型。
ARMS-PCR法的荧光PCR检测时,同样使用TaqMan探针,只是将SNP位点设计在引物3’末端,因此理论上只有引物3’端与模板完全匹配时,才能形成扩增曲线;但在实际检测时,单个碱基的错配依然可以延伸扩增,只是效率较低。为了提高其特异性,有时需在靠近引物3’末端的位置人为引入错配碱基,以降低非靶标序列的扩增效率。