Login
欢迎浏览恩派尔生物资料网
我要投稿 请登录 免费注册 安全退出

您现在的位置是: 首页 > 实验方法 > 细胞技术

细胞技术

Multiphoton Laser Scanning Microscopy as a Tool for Xenopus Oocyte Research

2025-02-27 细胞技术 加入收藏
Multiphoton laser scanning microscopy (MPLSM) has become an increasingly invalua

Multiphoton laser scanning microscopy (MPLSM) has become an increasingly invaluable tool in fluorescent optical imaging. There are several distinct advantages to implementing MPLSM as a Xenopus oocyte research tool. MPLSM increases signal-to-noise ratio and therefore increases image quality because there is no out-of-focus fluorescence as would be created in conventional or confocal microscopy. All the light that is generated can be collected and used to generate an image because point detection of descanned fluorescence is not required. This is particularly useful when imaging deep into tissue sections, as is necessary for Xenopus oocytes, which are notoriously large (∼l-mm diameter). Because multiphoton lasers use pulsed energy in the infrared wavelengths, the energy can also travel further into tissues with much less light scattering. Because there is no out-of-focus excitation, phototoxicity, photodamage, and photobleaching are significantly reduced, which is particularly important for long-term experiments that require the same region to be scanned repeatedly. Finally, multiple fluorophores can be simultaneously excited because of the broader absorption spectra of multiphoton dyes. In this chapter, we describe the advantages and disadvantages of using MPLSM to image Xenopus oocytes as compared to conventional and confocal microscopy. The practical application of imaging oocytes is demonstrated with specific examples.

文章底部广告位

文章评论

加载中~