Dioxygen-Dependent Metabolism of Nitric Oxide
Nitric oxide (NO) serves critical signaling, energetic, and toxic functions throughout the biosphere. NO steady-state levels and functions are controlled in part by NO metabolism or degradation. Dioxygen-dependent NO dioxygenases (EC 1.14.12.17) and dioxygen-independent NO reductases (EC 1.7.99.7) are being identified as major routes for NO metabolism in various life forms. Here we describe the use of the Clark-type NO electrode, mechanistic inhibitors, and nitrate/nitrite assays to measure, characterize, and identify major NO metabolic pathways and enzymes in bacteria, fungi, plants, mammalian cells, and organelles. The methods may prove to be particularly useful for mechanistic investigations and the development of inhibitors, inducers, and other novel NO-modulating therapeutics.