Login
欢迎浏览恩派尔生物资料网
我要投稿 请登录 免费注册 安全退出

您现在的位置是: 首页 > 实验方法 > DNA

DNA

限制性内切酶的研究进展

2024-10-22 DNA 加入收藏
30多年前,当人们在对噬菌体的宿主特异性的限制-修饰现象进行研究时,首次发现了限制性内切酶。细菌可以抵御新病毒的入侵,而这种"限制"病毒生存

30多年前,当人们在对噬菌体的宿主特异性的限制-修饰现象进行研究时,首次发现了限制性内切酶。细菌可以抵御新病毒的入侵,而这种"限制"病毒生存的办法则可归功于细胞内部可摧毁外源DNA的限制性内切酶。

首批被发现的限制性内切酶包括来源于大肠杆菌的EcoR I和EcoR II,以及来源于Heamophilus influenzae的Hind II和Hind III。这些酶可在特定位点切开DNA,产生可体外连接的基因片段。研究者很快发现内切酶是研究基因组成、功能及表达非常有用的工具。

当限制性内切酶的应用在上世纪七十年代流传开来的时候,以NEB为代表的许多公司开始寻找更多的限制性内切酶。除了某些病毒以外,限制性内切酶只在原核生物中被发现。人们正在从数以千计的细菌及古细菌中寻找新的限制性内切酶。而对已测序的原核基因组数据分析表明,限制性内切酶在原核生物中普遍存在--所有自由生存的细菌和古细菌似乎都能编码限制性内切酶。

限制性内切酶的形式多样,从大小上来说,它们可以小到如Pvu II(157个氨基酸),也可以比1250个氨基酸的Cje I更大。在已纯化分类的3000种限制性内切酶中,已发现了超过250种的特异识别序列。其中有30%是在NEB发现的。对具有未知特异识别序列的限制性内切酶的研究发现工作仍在继续。

人们从分析细胞提取物的生化角度研究的同时,也采用计算机分析已知的基因组数据,以期有更多的发现。尽管很多新发现的酶的识别序列与已有的重复--即同裂酶,仍然有识别新位点的酶不断被发现。

上世纪80年代,NEB开始克隆并表达限制性内切酶。克隆技术由于将限制性内切酶的表达与原有细胞环境分离开来,避免了原细胞中其它内切酶的污染,从而提高了酶的纯度。

此外,克隆技术提高了限制性内切酶的产量,简化了纯化过程,使得生产成本显著降低;克隆的基因很容易进行测序分析,表达出的蛋白也能进行X射线结晶分析,这使得我们对于克隆产物更加确定。

限制性内切酶的主要功能是保护细菌不受噬菌体的感染,这一观点已被人们广泛接受。它们作为微生物免疫机制的一部分行使其功能。当一个没有限制性内切酶的细菌被病毒感染时,大部分病毒颗粒都能成功地进行感染。

然而一个有限制性内切酶的同种细菌被成功感染的比率显著下降。出现更多的限制性内切酶将会起到多重保护作用;而一个拥有4到5种各自独立的限制性内切酶将会使细胞坚不可摧。

限制性内切酶常常伴随一到两种修饰酶(甲基化酶)出现。后者的作用是保护细胞自身的DNA不被限制性内切酶破坏。修饰酶识别的位点与相应的限制性内切酶相同,但只甲基化每条链中的一个碱基,而不是切开DNA链。

限制性内切酶识别位点处的甲基基团伸入到双螺旋的大沟中去,阻碍了限制性内切酶的作用。这样,限制性内切酶和它的"搭档"--甲基化酶一起就构成了限制-修饰(R-M)系统。在一些R-M系统中,限制性内切酶和修饰酶是两种不同的蛋白,它们各自独立行使自己的功能;而在另一些系统中,两种功能由同一种限制-修饰酶的不同亚基,或是同一亚基的不同结构域来执行。


文章底部广告位

文章评论

加载中~