Login
欢迎浏览恩派尔生物资料网
我要投稿 请登录 免费注册 安全退出

您现在的位置是: 首页 > 实验方法 > 细胞技术

细胞技术

全方位带您了解细胞培养基!

2024-09-15 细胞技术 加入收藏
细胞培养基(cell culture medium)是人工模拟动物细胞的体内生长环境,维持体外细胞存活和增殖的营养物质基础,其主要功能是为细胞提供适宜的pH和渗

细胞培养基(cell culture medium)是人工模拟动物细胞的体内生长环境,维持体外细胞存活和增殖的营养物质基础,其主要功能是为细胞提供适宜的pH和渗透压,以及细胞本身不能合成的各种营养物质。本文将对细胞培养基的种类、成分及理化性质,以及相关问题等方面进行介绍。

1. 细胞培养基的种类


按照细胞培养基的发展历史,细胞培养基大致可分为平衡盐溶液、天然细胞培养基、合成细胞培养基、无血清细胞培养基、限定化学成分细胞培养基等几大种类。


1.1 平衡盐溶液(balanced salt solution,BSS)


BSS主要是由无机盐、葡萄糖组成,它的作用是维持细胞渗透压平衡,保持pH稳定及提供简单的营养。其主要用于细胞的漂洗、配制其他试剂等。几种常用的BSS配方如下(表1-1)。


D-Hank's与Hank's的一个主要区别是前者不含有Ca2+和Mg2+,因此D-Hank's常用于配制胰酶溶液。因为Ca2+、Mg2+是细胞膜的重要组成成份,参与细胞粘附等功能,使用不含Ca2+、Mg2+的BSS可避免细胞结团。此外,Hanks液和Earle液是常用的BSS基础溶液,前者缓冲能力较弱,适合于密闭培养;后者缓冲能力较强,适合于5% CO2的培养条件。


表1-1   几种常用的BSS配方(g/L)

微信图片_20210918160920.jpg


1.2 天然细胞培养基


天然培养基指来自动物体液或利用组织分离提取的一类培养基,如血浆、血清、淋巴液、鸡胚浸出液等。其优点是营养成分丰富,培养效果良好,但缺点是成分复杂,来源受限且制作过程复杂、批间差异大。目前广泛使用的天然培养基是血清,另外各种组织提取液、促进细胞贴壁的胶原类物质在培养某些特殊细胞也是必不可少。


水解乳蛋白是乳白蛋白经蛋白酶和肽酶水解的产物,含丰富的多肽、氨基酸和碳水化合物。一般配制成0.5 %溶液(采用平衡盐溶液溶解)与合成培养基(如MEM细胞培养基)以1:1的比例混合使用。


目前用于细胞培养的血清主要是牛血清,培养某些特殊细胞也用人血清、马血清等。牛血清对绝大多数哺乳动物细胞都是适合的,但并不排除在培养某种细胞时使用其他动物血清更合适。血清中含有各种血浆蛋白、多肽、脂肪、碳水化合物、生长因子、激素、无机物等,这些物质对促进细胞生长或抑制生长活性是达到生理平衡的。此外,血清含一些对细胞产生毒性的物质,如多胺氧化酶,能与来自高度繁殖细胞的多胺反应(如精胺、亚精胺)形成有细胞毒性作用的聚精胺。补体、抗体、细菌毒素等都会影响细胞生长,甚至造成细胞死亡。目前,血清多作为一种添加成分与合成培养基混合使用,使用浓度一般为5~20 %,最常用是10 %。


由于水解乳蛋白和血清成份复杂,批间差异大及存在病毒等外源污染风险,对下游生物制品的分离纯化和安全性都存在较大的影响,在生物制药行业的使用也越来越少。因此,基于对血浆成份的分析,合成细胞培养基应运而生。


1.3 合成细胞培养基


合成培养基是根据天然培养基的成分,用化学物质模拟合成、人工设计、配制的培养基。最早开发的基础培养基(minimal essential medium, MEM),其本质为含有盐、氨基酸、维生素和其他必需营养物的pH缓冲的等渗混合物。在此基础上,DMEM、IMDM 、HAM F12、PRMI1640等各种合成细胞培养基被不断开发出来。常用合成培养基的配方此处不详细介绍,其特性及应用的范围见表1-2。


表1-2   常用合成培养基的特性及应用的范围

微信图片_20210918160925.jpg


与天然培养基相比,有些天然的未知成分尚无法用已知的化学成分所替代,因此,细胞培养中使用合成培养基时必须加入一定量的天然培养基成分,以克服合成培养基的不足。最普遍的做法是添加5~10 %的血清,这样才能维持细胞活力,促进细胞增殖。针对不同的动物细胞,现已开发了多种商业化、个性化的低血清细胞培养基配方,营养成份更加丰富,血清使用量可降低至1~3 %,由此可减少了血清等动物来源成份对生物制品安全性的影响。


1.4 无血清细胞培养基(serum free medium,SFM)


经历了天然培养基、合成培养基后,无血清培养基和无血清培养成为当今细胞培养领域的一大趋势。采用无血清培养可降低生产成本,简化分离纯化步骤,避免病毒污染造成的危害。无血清培养基,一般是在合成培养基的基础上,加入成份完全明确的或部分明确的血清替代成份,达到既能满足动物细胞培养的要求,又能有效克服使用血清所带来问题的目的。


无血清培养基中通常需要添加一些额外的组分,才能帮助细胞贴壁生长,包括以下几大类物质:


1)促贴壁物质:一般为细胞外基质,如纤连蛋白、层粘连蛋白等。它们还是重要的分裂素以及维持正常细胞功能的分化因子,对许多细胞的繁殖和分化,起着重要作用。纤连蛋白主要促进来自中胚层细胞的贴壁与分化,这些细胞包括成纤维细胞、肉瘤细胞、粒细胞、肾上皮细胞、肾上腺皮质细胞、CHO细胞、成肌细胞等。


2)促生长因子及激素:针对不同细胞添加不同的生长因子。激素也是刺激细胞生长、维持细胞功能的重要物质,有些激素是许多细胞必不可少的,如胰岛素。


3)酶抑制剂:培养贴壁生长的细胞,需要用胰酶消化传代,在无血清培养基中需含酶抑制剂,以终止酶的消化作用,达到保护细胞的目的。最常用的是大豆胰酶抑制剂。


4)结合蛋白和转运蛋白:常见如转铁蛋白和牛血清白蛋白。牛血清白蛋白的添加量比较大,可增加培养基的粘度,保护细胞免受机械损伤。许多旋转式培养的无血清培养基都含有牛血清白蛋白。


5)微量元素:硒是最常见的。


1.5 无蛋白无血清细胞培养基与化学组份限定无血清细胞培养基


1)无蛋白无血清细胞培养基(protein free midium, PFM)


这类培养基完全不含有动物来源蛋白,但仍有部份添加物是植物蛋白的小水解片段或合成多肽片段,以及类固醇激素和脂类前体等,以替代动物激素、生长因子的作用。其特点是完全没有蛋白或蛋白含量极低,有利于生物制品的分离纯化。


2)化学组份限定无血清细胞培养基(Chemically defined media, CDM)


此类培养基是目前最安全、最为理想的无血清细胞培养基,所有成份的浓度都完全明确,即使其所添加的少量蛋白,也是可经过纯化处理,成份明确、浓度确定的蛋白。这类培养基较为理想地减少了生产的可变性,提高了生产工艺的重复性,并有效降低了纯化成本。


1.6 个性化细胞培养基


严格意义上来说,个性化细胞培养基不在细胞培养基的传统分类之列,其具体是指一类根据细胞特性、细胞培养工艺特点、使用者需求习惯而量身定制的细胞培养基,主要目的是提高细胞产率、产品质量、产品安全性和降低血清的使用等。个性化细胞培养基可能是无血清培养基,也可能是低血清培养基,最终是为满足某一种或某一类生物制品的生产需求。


2. 培养基的基本组分


细胞培养基必须含有充分的营养物质,才能满足新细胞合成、细胞代谢等生化反应所需要的物质和能量。细胞培养基的主要成份是水、氨基酸、维生素、碳水化合物、无机盐和其它一些辅助营养物质等。此外,还可能含有血清、血清替代成分、pH指示剂等。


2.1 水


水是细胞的主要成份,也是细胞赖以生存的主要环境。细胞培养液中90 %以上的成份是水。细胞对水的品质非常敏感,水的品质将直接影响细胞培养的效果。而水中通常含有重金属、氯、磷、有机物、热原等污染物,细胞培养用水须经过纯化,品质应符合中国药典注射用水标准或者超纯水的标准。


2.2 能源和碳源


能源和碳源是用于维持细胞生命和支持细胞生长,主要包括糖、糖酵解的产物和谷氨酰胺,其他氨基酸是次要的能源和碳源物质。细胞能够利用的糖类主要是六碳糖,目前大多体外培养时选取葡萄糖作为细胞的主要碳源和能量来源,因此细胞培养基中基本都含有葡萄糖,含量一般为5~25 mmol/L。


在葡萄糖浓度较高时,细胞主要通过扩散作用吸收葡萄糖,细胞膜内外的葡萄糖浓度梯度是细胞吸收葡萄糖的动力;在葡萄糖浓度较低时,主要由钠离子推动的高亲和性转运过程使细胞摄取葡萄糖。葡萄糖进入细胞后参与糖酵解、核酸代谢、糖原合成、能量代谢以及一些氨基酸的合成。与体内的能量供应途径不同,体外培养时,一定的浓度范围条件下,葡萄糖主要经糖酵解循环转化成乳酸来为细胞提供能量。


2.3 氮源(氨基酸)


氨基酸在细胞内的重要生理作用主要体现在以下几个方面:


① 是蛋白质的基本组成单位,用于合成蛋白质和多肽;


② 可用于合成某些具有重要生理作用的含氮化合物,如核酸、尼克酰胺等;


③ 某些氨基酸还具有独特的生理作用,如甘氨酸参与生物转化作用,丙氨酸和谷氨酰胺参与细胞内氨的运输等;


④ 可转变成糖类和脂肪,参与氧化供能。


细胞所能利用的氨基酸是L型同分异构体,D型氨基酸不能被利用。不同的细胞对氨基酸的需求各异,但有些必需氨基酸是细胞不能自身合成的,必须依靠外源的细胞培养液提供。其余非必需氨基酸,细胞可以自己合成,或通过转氨作用由其他物质转化而来,但是在细胞培养基中添加适当浓度的非必需氨基酸可以减轻细胞在合成方面的负担,提高谷氨酰胺及其它必需氨基酸的利用率。


绝大部分细胞对谷氨酰胺有较高的要求,可能因其不仅是细胞的主要氮源,且可作为细胞生长的能源物质和嘌呤、嘧啶核苷酸的前体,另外还可直接作为细胞增殖和产物合成中的蛋白质和多肽的组成成分。在缺少谷氨酰胺时,细胞会生长不良,甚至死亡。由于谷氨酰胺具有多种生理作用,体外动物细胞培养时需要大量谷氨酰胺,利用量常超过其他必须氨基酸利用量的总和。


2.4 维生素


维生素是维持细胞生长的生物活性物质,在细胞代谢中起调节及控制作用。维生素可分为水溶性和脂溶性两类,水溶性维生素主要包括泛酸、维生素B12、叶酸、烟酰胺、吡哆醛、硫胺素、核黄素、维生素C、胆碱、肌醇等;脂溶性维生素主要包括维生素A、D、 E、K等;有的培养液中还直接采用ATP和辅酶A;大部分培养基中还有生物素。


许多维生素参与构成各种酶的活性基团的成分,没有它们,酶便没有活性,代谢活动将无法进行。比如,泛酸可以在细胞内转变成酰基载体蛋白和辅酶(如辅酶A),参与糖类、脂类和蛋白质代谢中的催化反应;维生素B12则在细胞内参与叶酸的合成和脂肪酸的合成等。不同配方的细胞培养基中维生素的浓度有较大差异。例如,DMEM培养基中维生素的含量约为MEM培养基的两倍,其原因是一方面不同种类维生素的作用不同,另一方面不同种类的细胞对维生素的需求也可能有较大差异,相应细胞培养基的配方中维生素的含量也可能不同。


2.5 无机盐


无机盐是细胞维持生命活动所不可缺少的营养成分,主要有Na+、K+、Ca2+、Mg2+、Cl、PO43-、SO42-、HCO3等,主要作用为维持细胞培养液渗透压平衡,参与细胞的代谢活动。此外,通过提供钠,K+和Ca2+,帮助细胞调节细胞膜功能。Na+是细胞外液中最主要的阳离子,对维持渗透压的恒定有决定性的作用,还与Cl共同参与生物电活动、维持水平衡和酸碱平衡等。K+主要分布在细胞内液,对于激活某些酶是必需的,并在调节细胞内环境的酸碱平衡上也有极重要意义。Ca2+和Mg2+主要参与信号传导、能量代谢、脂肪酸合成、核糖体稳定和蛋白质合成等多种生理作用。PO43-、SO42-、HCO3是基质所需阴离子,同时是细胞内电荷的调节者。磷对于细胞的生长、代谢和调控都有重要的作用,含磷的化合物如核酸、磷脂、蛋白质是构成细胞的主要成分,ATP、ADP是能量生成、存储和利用的不可或缺的化合物。


上述离子对于细胞的作用各有不同,它们共同构成了细胞赖以生存的渗透压、pH和电化学平衡的微环境,细胞对于某种元素的吸收利用会受到其它元素的干扰,例如培养基中过高的钙离子浓度会使镁和锌的吸收利用受到干扰。因此,在保证培养基中上述离子浓度满足要求以外,还需保证上述离子之间种类和比例的平衡。


此外,微量元素如铁、钴、镍、硒、碘、铜、锌、锰、铬、钼、氟等对于细胞生长代谢和产物合成都有促进作用。微量元素在细胞内通常以与有机物结合的形式存在。其中铁在细胞中参与氧的转运;钴是维生素B12的组成部分,参与叶酸的合成和脂肪酸的合成;镍能够激活脱氧核糖核酸酶、乙酰辅酶A合成酶等在细胞内具有重要功能的酶,还具有稳定核酸结构的功能;亚硒酸钠中的硒,作为谷胱甘肽过氧化物酶的辅基,具有抗过氧化物能力,参与消除细胞内的脂肪酸过氧化物,提高细胞的生长速率和活性。


2.6 其他添加成分


在低血清、无血清细胞培养基中,为满足细胞生长增殖需要,常常添加一些成份:蛋白质、多肽、核苷、嘌呤、柠檬酸循环的中间产物、脂类、及一些血清替代因子等。其中蛋白质具有重要的作用,动物细胞对许多物质(难溶于水的离子或脂类物质)的摄取需要借助蛋白质的传递作用,如白蛋白、传递蛋白、贴壁蛋白等能够携带脂肪酸、激素、矿物质等促进细胞生长。转铁蛋白是一种重要的传递蛋白,能够结合铁,促进细胞对铁离子的吸收,并具有解毒作用,其促生长作用可能与其具有生长因子的功能有关。胰岛素可促进细胞对葡萄糖和氨基酸的利用,商业化中一些生长因子以重组蛋白形式添加到培养基中,主要用来刺激细胞增殖,并可促进糖元和脂肪酸的合成。乙醇胺是一种重要的刺激细胞生长的化合物,是脑磷酸的合成前提。


另外,酚红作为pH值的指示剂被加入到细胞培养基中。酚红在产物纯化过程中会造成干扰,并且具有一定的固醇类激素样作用,如雌激素样作用。当用于哺乳类动物细胞的培养,可能会发生一些固醇类反应。现在商业化细胞培养基中的酚红含量可根据需求调整。因生物反应器具有pH在线检测技术,生物反应器培养动物细胞时,酚红可完全去除。


2.7 保护剂


细胞保护剂是保护细胞免受渗透压变化、剪切力、氧化及气泡作用等引起的损伤的物质。在使用生物反应器培养动物细胞时,细胞易被机械搅拌和通气鼓泡产生的流体剪切力和气泡作用所伤害甚至破损死亡。为降低这种损伤,除优化生物反应器结构和生产工艺外,可在细胞培养液中添加一些保护剂。其主要是通过改变细胞培养基物性或是对细胞具有保护作用的物质,常用的种类有血清、白蛋白、聚已二醇(PEG)、非离子性表面活性剂PluronicF68或是其他一些高分子聚合物等。


3. 细胞培养基的理化性质


动物细胞在细胞培养基中不仅能存活,还要分裂增殖,合适的渗透压、pH值等理化性质是细胞培养基必须具备的前提条件。


3.1 pH


动物细胞大多数需要轻微的碱性条件,适宜pH在7.2~7.4之间。细胞培养基的pH值通常需经校正的pH计来测定。在细胞生长过程中,随细胞数量的增多和代谢活动的加强,二氧化碳不断被释放,培养液变酸,pH值发生变化。酚红是细胞培养基中最常用的pH指示剂,但依靠细胞培养基中的酚红等pH指示剂进行判断,需要实验员的经验积累,存在较大的主观性。实际上,个性化细胞培养基或是无血清细胞培养基中酚红含量较少或是不含酚红,只能通过pH计或者pH电极进行pH值的检测,结果更为准确可靠。


3.2 缓冲能力


细胞培养基应具有一定的缓冲能力。细胞培养过程中造成细胞培养液 pH 波动的主要物质是细胞代谢产生的CO2。在封闭式培养过程中CO2与水结合产生碳酸,细胞培养液pH 很快下降;打开培养器具时CO2逸出则会引起pH升高。细胞培养基通常采用NaHCO3-CO2缓冲系统,按下列化学反应方程式调节细胞培养基的pH值:


H2O + CO2 → H2CO3 ⇌ H++ HCO3


NaHCO3 ⇌ Na+ + HCO3


此外,还有缓冲能力较高的磷酸盐缓冲系统。但碳酸盐缓冲系统的细胞毒性小、成本低,在细胞培养中应用得更为广泛。另一种较为常用的缓冲液是HEPES(羟乙基哌嗪乙硫磺酸)液,它是一种非离子两性缓冲液,在pH 7.0 ~ 7.2范围内具有较好的缓冲能力。高浓度的HEPES可能对细胞有毒性作用,细胞培养时HEPES的添加浓度一般为10~25 mmol/L。


3.3 渗透压


细胞必须生活在等渗的环境中,大多数体外培养的细胞对渗透压有一定耐受性。研究显示,对于大多数哺乳类动物细胞,渗透压在260~320 mOsm/kg的范围内都适宜。在生产、配制细胞培养基的过程中,渗透压的测定较为重要,有助于防止在生产、配制过程中出现称量等方面的错误。反应器高密度培养动物细胞过程,在添加碳酸氢钠的过程中注意渗透压的监控,防止渗透压过高对细胞的损害。


3.4 温度


温度对细胞培养基有较大的影响,温度过高可引起营养成份的降解或破坏,细胞培养基的pH、离子强度和电解常数pKa也可能受到影响。如细胞培养液中的谷氨酰胺,在高温条件下降解的速度较快,如35 ℃贮存时,放置3天降解25 %左右,在4 ℃贮存3周降解约20%。


3.5 粘滞性及表面张力


含血清细胞培养液的粘滞性主要是由血清引起的,在转瓶培养贴壁细胞时,培养液的粘滞性对细胞生长没有多大影响;但在生物反应器悬浮培养细胞时,细胞培养液的粘滞性则直接影响搅拌转速控制及搅拌剪切力对细胞造成的损伤程度。


表面张力对细胞培养有较大的作用,尤其在利用生物反应器进行悬浮培养时,搅拌和通气都会引起泡沫的产生。对于含血清培养液,由于血清中多种蛋白的存在,搅拌时产生的气泡较多,气泡的上升运动对细胞的损伤程度还有争议,但气泡的破裂对细胞有明显的损伤作用。为降低这种损伤,可通过在细胞培养基中添加一些保护剂,降低细胞-气体和细胞-液体的表面张力,减少气泡的形成。




4. 细胞培养基的灭菌及储存


4.1不同细胞培养基的除菌方式及注意事项


细胞培养基灭菌的方式分为高压灭菌和膜过滤除菌,不同的培养基由于其营养成份不同,灭菌方式也可能不同。


高压灭菌


某些培养基(如MEM)可进行高压灭菌,这类培养基一般不含有L-谷氨酰胺和碳酸氢钠,一般是在培养基高压灭菌后才加入。另外可用耐高压的谷氨酸盐(如L-丙氨酰-L-谷氨酰胺)代替L-谷氨酰胺。可高压灭菌的培养基在121℃、15 psi,15分钟的条件下完全可达到灭菌效果及营养成分的最小损失,不需将灭菌时间延长。


绝大多数细胞培养基不适宜高压灭菌。因培养液中常含有维生素、蛋白质、多肽、生长因子等物质,这些物质在高温或射线照射下易发生变性或失去功能,因而上述液体多采用过滤消毒以除去细菌。可供过滤灭菌使用的滤膜很多,其材料多为polyethersulphone(PES)、尼龙、多聚碳酸盐、醋酸纤维素、硝酸纤维素、PTFE、陶瓷等。膜过滤除菌是当前较为常用及便捷的一种方法,常采用0.2 μm孔径的滤膜,部份采用0.1 μm孔径。与高压过滤方式相比,滤膜具有使用期限且价格较高,但对细胞培养基的营养成份破坏性较小。


4.2 不同细胞培养基存储过程中的注意事项


通常液体细胞培养基避免-20 ℃冻存,因为解冻时可能会有营养成份析出,影响培养效果。正常情况下于2 ~ 8 ℃避光保存,使用前从冰箱取出,放入室温进行平衡。通常的液体培养基有效期是6个月到12个月。液体细胞培养基尽量避免长期贮存,其中的谷氨酰胺会随着储存时间的延长而慢慢分解,如果细胞生长不良,可考虑检测培养基中的谷氨酰胺含量确定是否再补加谷氨酰胺。市售商业化液体细胞培养基有具体的有效期,对于使用干粉细胞培养基自行配制成液体以后,也应低温(2 ~ 8 ℃)贮存。除培养基中如谷氨酰胺易降解之外,培养基中的其他成份随着温度的升高也可能会发生降解或是析出。


5. 细胞培养基使用过程中常见问题分析

5.1 细胞培养基的缓冲系统选择及pH变化问题


由于大多数细胞适宜的pH为7.0~7.4,偏离此范围可能对细胞生长产生有害的影响。但各种细胞对pH的要求也不完全相同,原代培养的细胞一般对pH变动耐受力差,无限细胞系耐受力强。因此,原代培养时,培养液中的缓冲系统就显得较为重要。一般的细胞培养基采用的都是平衡盐系统,但不同的培养基或是同一系列的培养基所用平衡盐系统不同,如199系列、MEM系列均有Hanks’系统的培养基及Earle’s系统的培养基。有些培养基不是上述常规的平衡盐系统,例如RPMI1640培养基、F12培养基。MEM低血清培养基的平衡盐系统也不是常规的平衡盐系统,该平衡盐系统的缓冲能力强于常规平衡盐系统的缓冲能力。


细胞培养过程中pH值下降产生的原因有很多。在细胞生长非常快时,pH值通常下降得很快,此时可以通过及时传代、提高传代比例或降低血清量等方法进行解决。此外,培养瓶盖拧得过紧、NaHCO3缓冲系统缓冲能力不够、培养液中盐浓度不正确、细菌、酵母或真菌污染等也能导致pH值通常下降得很快。这时,可以通过以下几种方法解决:


1)增加培养液中NaHCO3浓度或减少培养箱内CO2浓度。NaHCO3含量在2.0 g/L到3.7 g/L之间时对应的CO2浓度为5~10%;


2) 改用不依赖CO2培养液;


3) 适当松开瓶盖。在培养液中加HEPES缓冲液,使终浓度为10~25 mM;


4)   在CO2培养环境中改用基于Earle's盐配制的培养液,在大气培养环境中培养改用Hanks'盐配制的培养液;


5)   如果是污染造成的则丢弃培养物或用抗生素除菌。




5.2 细胞培养基常用几种重要的添加成份及使用过程中应注意的问题


酚红在细胞培养基中用作pH值的指示剂。一般情况下,可以通过酚红的指示作用判断培养基的pH值,但低血清或是无血清细胞培养基中酚红的含量与普通细胞培养基中的酚红含量不同,不能通过肉眼观察或通过经验来判定pH值,建议使用pH计进行测定。酚红通常对含血清的细胞培养基生产的生物制品质量并不会产生明显影响,也可通过纯化技术去除,但酚红在无血清细胞培养基中可能带来胞内钠/钾失衡,影响细胞生长。


碳酸氢钠在细胞培养基中主要是作为缓冲系统,此外还具有调节渗透压的作用。通常产品使用说明中的碳酸氢钠推荐量是一个标准、安全量,是在科学的基础上根据实践经验所得。但是由于不同的细胞系(株)不同,同一株细胞适应环境也可能不同(细胞耐受性不同等),且存在的地域性水质差异等,在实际生产过程中也可稍作改动,但使用者需做相应的检测(理化及细胞生产试验等)。


HEPES是一种非离子缓冲液,在pH 7.2 ~7.4范围内具有较好的缓冲能力,在高浓度时对一些细胞可能有毒。HEPES缓冲液可与低水平的碳酸钠(0.34g /L)共用,以抵消因额外加入HEPES引起的渗透压增加。其安全浓度范围是10~25mmol/L。


丙酮酸钠可以作为细胞培养中的替代碳源,尽管细胞更倾向于以葡萄糖作为碳源,但是在没有葡萄糖的条件下,细胞也可以代谢丙酮酸钠。


谷氨酰胺在溶液中很不稳定,4 ℃下放置1周可分解50 %,使用中最好单独配制,置-20 ℃冰箱中保存,使用前加入细胞培养液中。



文章底部广告位

文章评论

加载中~