Login
欢迎浏览恩派尔生物资料网
我要投稿 请登录 免费注册 安全退出

您现在的位置是: 首页 > 实验方法 > PCR技术

PCR技术

PCR技术详解

2024-11-09 PCR技术 加入收藏
PCR技术概论   聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。 它具有特异、敏感、产

PCR技术概论   聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。 它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究的目的基因或某一DN***段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研究和检测鉴定。过去几天几星期才能做到的事情,用PCR几小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑。 PCR技术简史   PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”。   PCR的实现 1985年美国PE-Cetus公司人类遗传研究室的Mullis 等发明了具有划时代意义的聚合酶链反应。其原理类似于DNA的体内复制,只是在试管中给DNA的体外合成提供以致一种合适的条件---摸板DNA ,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间。   PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌 DNA 聚合酶 I 的Klenow片段,其缺点是:①Klenow酶不耐高温, 90℃会变性失活,每次循环都要重新加。②引物链延伸反应在37℃下进行,容易发生模板和引物之间的碱基错配,其PCR产物特异性较差,合成的DN***段不均一。此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难。这使得PCR技术在一段时间内没能引起生物医学界的足够重视。   1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DN***段很均一,真实性也较高,只有所期望的一种DN***段。但每循环一次,仍需加入新酶。   1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶。 此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的60%,在95℃下反应2h后其残留活性是原来的40%。②在热变性时不会被钝化,不必在每次扩增反应后再加新酶。③大大提高了扩增片段特异性和扩增效率,增加了扩增长度(2.0Kb)。由于提高了扩增的特异性和效率,因而其灵敏性也大大提高。为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase)。此酶的发现使PCR广泛的被应用。 PCR技术的基本原理   PCR技术的基本原理 类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。   PCR的反应动力学  PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DN***段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。 反应初期,靶序列DN***段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA 片段不再呈指数增加,而进入线性增长期或静止期, 即出现“停滞效应” ,这种效应称平台期数、PCR 扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多数情况下,平台期的到来是不可避免的。   PCR扩增产物  可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5'端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中, 以两条互补的DNA为模板,引物是从3'端开始延伸, 其5'端是固定的,3' 端则没有固定的止点,长短不一,这就是“长产物片段”。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。引物在与新链结合时, 由于新链模板的5'端序列是固定的, 这就等于这次延伸的片段3'端被固定了止点, 保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的“短产物片段”。不难看出“短产物片段”是按指数倍数增加, 而“长产物片段”则以算术倍数增加, 几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DN***段供分析与检测用。 PCR反应体系与反应条件 标准的PCR反应体系:    10×扩增缓冲液   10ul    4种dNTP混合物   各200umol/L    引物        各10~100pmol     模板DNA      0.1~2ug      Taq DNA聚合酶   2.5u     Mg2+       1.5mmol/L    加双或三蒸水至  100ul   PCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+   引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列, 就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。设计引物应遵循以下原则:   ①引物长度: 15-30bp,常用为20bp左右。   ②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段。   ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 (责任编辑:大汉昆仑王)

文章底部广告位

文章评论

加载中~